Senin, 27 Februari 2012

Menentukan Titik Didih & Titik Beku Larutan NaCl

Ke dalam 250 gram air ditambahkan 11,7 gram garam dapur. Jika Kf=1,86 dan Kb= 0,52 dan Ar Na = 23 Cl = 35,5 maka tentukan:
  1. titik didih larutan
  2. titik beku larutan
Jawab:
Untuk menjawab soal-soal tentang sifat koligatif larutan maka tentukan dahulu apakah zat yang terlibat adalah elektrolit atau nonelektrolit. Ini penting sebab bila zat yang terlibat adalah elektrolit maka Anda harus memasukkan vaktor Van Hoff ke dalam rumus yang akan dipakai.
Karena yang dipakai adalah garam dapur (NaCl) maka sudah pasti NaCl adalah elektrolit kuat.
Yang diketahui dari soal adalah:
massa air = 250 g
massa NaCl = 11,7 g
molalitas NaCl dihitung dengan rumus:
= g/Mr x 100/p
= (11,7/58,5)x(1000/250)
= 0,8 m
Faktor Van Hoff
= {1+?(n-1) }
= 1 + 1(2-1)
= 2
Kenaikan titik didih larutan (?Tb):
= m. Kb.i
= 0,8 x 0,52 X 2
= 0,832 0C
Titik didih larutannya:
= 100 + 0,832
= 100,832 0C
Penurunan titik beku larutan (?Tf):
= m. Kf . i
= 0.8 x 1,86 x 2
= 2,976 0C
Dan titik beku larutannya adalah:
= 0-2,976
= -2,976 0C

Menghitung ph Larutan Asam

1. Berapakah pH larutan yang mengandung ion hidroksida sebesar 10exp-8?
Jawab:
Perlu diingat bahwa untuk menyelesaikan soal diatas maka kita perlu memakai hubungan antara Kw (konstanta tetapan air) dengan OH- dan H+, dimana ketiganya dihubungkan dengan persamaan:

Kw = [H+][OH-]

Pada suhu 25 C maka nilai Kw adalah 10exp-14 jadi:
Konsentrasi H+
= Kw/[OH-]
= 10exp-14/10-8
= 10-6 M
Jadi nilai pHnya:
= -log [H+]
= -log(10exp-6)
= 6
Jadi pH larutan adalah 6.

2. Jika 10 gram asam asetat dilarutkan dalam 300 mL air maka hitunglah pH larutan asam asetat tersebut (Ka = 10exp-5)
Jawab:
Karena yang diketahui adalah massa asam asetat maka kita perlu mengubah menjadi satuan konsentrasi yaitu molaritas. Pertama kita mencari mol asam asetat terlebih dahulu.
Mol asam asetat
= massa / Mr
= 10 /60
= 0,167 mol
Molaritas asam asetat
= mol / volume
= 0,167 mol / 0,3 L
= 0,557 M
Karena asam asetat termasuk asam lemah maka cara mencari ion H+ adalah sesuai dengan rumus berikut ini:

Jadi konsentrasi H+
= (10exp-5  x  0,557)exp1/2
= 0,00746  M
Dan pH asam asetat
= -log[H+]
= -log (0,00746  )
= 2,13
Jadi pH larutan asam asetat tersebut adalah 2,13.

3. Berapakah pH 200 mL larutan asam formiat 0,01 M yang memiliki derajat ionisasi 5%?
Jawab:
Asam formiat adalah asam lemah dimana dalam larutannya dia akan terurai sebagian. Pertama kita harus mencari berapa jumlah asam formiat yang terurai dengan menggunakan rumus berikut ini:
Derajat ionisasi = jumlah asam formiat yang terurai/jumlah asam formiat mula2 x 100%
Jadi jumlah asam formiat yang terurai
= (5% / 100) x 0,01
= 5.10exp-4 M
Jadi sesuai dengan reaksi berikut ini
HCOOH     ->    H+       +  HCOO-
5.10-4 M         5.10-4 M      5.10-4 M
Jadi konsentrasi H+ nya adalah 5.10-4 M dengan demikian pH larutan asam formiat tersebut adalah:
= -log [H+]
= -log 5.10exp-4
= 3,30
Jadi pH larutan asam formiat tersebut adalah 3,30.

4. Berapakah pH 500 mL larutan HF 0,1 M yang memiliki harga Ka = 5,6.10exp-4?
Jawab:
Asam flourida adalah asam lemah dimana memiliki harga Ka 5,6.10exp-4 dan untuk mengetahui konsentrasi ion H+ nya maka kita gunakan rumus berikut ini:

Jadi konsentrasi H+
= (Ka.M)exp1/2
= (5,6.10exp-4 x 0,1)exp1/2
= 7,48.10exp-3
pH nya
= -log[H+]
= -log 7,48.10exp-3
= 2,126

5. Berapakah pH larutan asam sulfat yang memiliki konsentrasi 70% berat dan diketahui massa jenisnya 1,615 g/mL?
Jawab:
Misalkan kita memiliki 100 mL larutan asam sulfat 70% maka massa larutan asam sulfat tersebut adalah:
= massa jenis x volume
= 1,615 g/mL x 100 mL
= 161,5 g
Massa asam sulfat
= prosentase x massa larutan
= 70% x 161,5 g
= 113,05 g
Massa air
= massa larutan – massa asam sulfat
= 161,5 – 113,05
= 48,45 g
Karena massa jenis air adalah 1 g/mL maka volume airnya akan sama dengan 48,45 mL.
Mole H2SO4
= massa/Mr
= 113,05/98
= 1,15 mol
Molaritas H2SO4
= mol / volume
= 1,15 / 0,04845
= 23,73 M
Konsentrasi H+
= valensi asam x M
= 2 x 23,73
= 47,46 M
pH
= -log 47,46
= -1,68
Jadi pH larutan asam sulfat 70% itu adalah -1,68.

Sifat Koligatif Larutan

Sifat koligatif yang akan kita bahas dalam ebook ini ada empat yaitu:
  1. Penurunan tekanan uap larutan
  2. Penurunan titik beku larutan
  3. Kenaikan titik didih larutan
  4. Tekanan Osmotik
Lalu apa sih sebenarnya yang dimaksud dengan sifat koligatif itu?
Sifat koligatif larutan adalah sifat larutan yang ditentukan oleh jumlah molekul atau ion yang terdapat di dalam larutan. Sifat ini tidak ditentukan oleh jenis zat yang terlarut, atau ukuran zat tersebut. Jadi dua hal yang mempengaruhi sifat koligatif yaitu banyaknya zat terlarut di dalam larutan dan jenis pelarut apa yang digunakan untuk melarutkan zat tersebut.
Jadi apabila larutan glukosa dan larutan urea (dalam pelarut air) memiliki jumlah zat yang sama maka sifat koligatif keduanya pun akan sama pula. Jangan bingung dengan istilah “jumlah zat” yang saya pakai untuk definisi ini sebab saya memilih kata tersebut untuk mendefinisikan secara general, kata lain yang bisa dipakai sebagai pengganti adalah “konsentrasi”.
Beberapa buku ada yang menyebutkan bahwa sifat koligatif itu dipengaruhi oleh seberapa besar jumlah pelarut yang terdapat di dalam larutan. Jadi larutan NaCl yang fraksi molnya 1/4 dan 3/4 akan memiliki sifat koligatif yang berbeda karena jumlah H2O masing-masing larutan berbeda yaitu 3/4 dan 1/4 fraksi mol.
Ok. Sekarang kita bahas satu persatu ya tentang sifat koligatif ini. Untuk mempelajari sifat koligatif maka kunjungi halaman berikut ini.
  1. Penurunan tekanan uap larutan
  2. Penurunan titik beku larutan
  3. Kenaikan titik didih larutan
  4. Tekanan Osmotik

Kenaikan Titik Didih Larutan

Berlawanan dengan penurunan titik beku larutan. Kenaikan titik didih larutan merupakan fenomena meningkatkan titik didih suatu pelarut disebabkan adanya zat terlarut didalam pelarut tersebut. Ini berarti bahwa titik didih pelarut akan lebih kecil jika dibandingkan dengan titik larutan. Sebagai contoh titik didih air murni adalah 100 C jika kita melarutkan gula atau garam dapur ke dalam air maka titik didihnya akan lebih dari 100 C.

Bagaimana Kita Mengukur Kenaikan Titik Didih Larutan?
Kenaikan titik didih larutan merupakan salah satu sifat koligatif larutan, Untuk menghitung perubahan titik didih larutan maka kita bisa menggunakan persamaan berikut ini:

?Tb = Kb. m . i

sedangkang titik didih larutan dicari dengan persamaan,
Tb = Tpelarut + ?Tb
dimana :

?Tb = penurunan titik beku larutan
Tb = titik beku larutan
m = molalitas larutan
Kb = konstanta titik beku pelarut
i = Faktor Van’t Hoff

Di bidang themodinamika konstanta titik beku pelarut, Kb lebih dikenal dengan istilah “Konstanta Ebulioskopik“. Ebulioskopik berasal dari bahasa Yunani yang artinya “mendidih”.
Faktor Van’t Hoff (i) adalah parameter untuk mengukur seberapa besar zat terlarut berpengaruh terhadap sifat koligatif (penurunan tekanan uap, kenaikan titik didih, penurunan titik beku, dan tekanan osmotik). Faktor Van’t Hoff dihitung dari besarnya konsentrasi sesunguhnya zat terlarut yang ada di dalam larutan dibanding dengan konsentrasi zat terlarut hasil perhitungan dari massanya. Untuk zat non elektrolit maka vaktor Van’t Hoffnya adalah 1 dan nonelektrolit adalah sama dengan jumlah ion yang terbentuk didalam larutan. Faktor Van’t Hoff secara teori dapat dihitung dengan menggunakan rumus:

i = 1 + (n-1)?)

dengan ? adalah derajat ionisasi zat terlarut dan n jumlah ion yang terbentuk ketika suatu zat berada didalam larutan. Untuk non elektrolit maka alfa = o dan n adalah 1 dan untuk elektrolit dicontohkan sebagai berikut:

C6H12O6 -> C6H12O6 n = 1
NaCl -> Na+ + Cl- n = 2
CaCl2 -> Ca2+ + 2Cl- n = 3
Na3PO4 -> 3Na+ + PO4- n = 4
Cu3(PO4)2 -> 3Cu2+ + 2PO43- n = 5

Data nilai Kf beberapa pelarut adalah sebagai berikut:

data Kb

Industri Kimia

Industri kimia merujuk pada suatu industri yang terlibat dalam produksi zat kimia. Industri ini mencakup petrokimia, agrokimia, farmasi, polimer, cat, dan oleokimia. Industri ini menggunakan proses kimia, termasuk reaksi kimia untuk membentuk zat baru, pemisahan berdasarkan sifat seperti kelarutan atau muatan ion, distilasi, transformasi oleh panas, serta metode-metode lain.
Industri kimia terlibat dalam pemrosesan bahan mentah yang diperoleh melalui penambangan, pertanian, dan sumber-sumber lain, menjadi material, zat kimia, serta senyawa kimia yang dapat berupa produk akhir atau produk antara yang akan digunakan di industri lain.


Kimia Industri mencakup hal yang cukup luas. Pada bagian ini akan diperkenalkan mengenai Kimia Industri, yang akan dimulai berdasarkan akar katanya, yaitu Kimia dan Industri. Selanjutnya pada sub bab selanjutnya akan dibahas mengenai sistem manajemen dalam suatu industri, khususnya industri besar dimana pada bagian ini akan terlihat pembagian pelaksanaan tugas mulai dari tingkat pelaksana yang dalam hal ini diduduki oleh seseorang dengan klasifikasi pendidikan minimal Sekolah Menengah Kejuruan Teknik / STM sampai dengan tingkat manajer puncak dengan klasifikasi pendidikan minimal sarjana. Dengan demikian diharapkan dapat sebagai gambaran kompetensi yang diperlukan apabila seseorang bekerja pada bidang industri kimia.
Pengenalan tentang “Kimia-Industri” diawali dengan pembahasan berdasarkan asal katanya, yang dimulai dari kata “Industri” dan dilanjutkan dengan kata “Kimia”. Kata Industri merupakan suatu proses yang mengubah bahan-baku menjadi produk yang berguna atau mempunyai nilai-tambah, serta produk tersebut dapat digunakan secara langsung oleh konsumen sebagai pengguna akhir dan produk tersebut disebut dengan “produk-akhir”, selain itu produk dari industri tersebut dapat juga digunakan sebagai bahan baku oleh industri lain, yang disebut juga sebagai “produk-antara”. Kata produk dalam Kimia Industri tentunya melibatkan Industri yang menghasilkan zat kimia. Sedangkan bahan baku yang diproses dalam industri tersebut dapat diperoleh melalui proses penambangan, petrokimia, pertanian atau sumber-sumber lain. Hubungan antara bahan-baku dengan produk baik produk-akhir maupun produk-antara dapat dilihat pada gambar 1.1, dimana produk yangdihasilkan dari industri merupakan produk yang diperlukan oleh manusia dalam hal ini produk tersebut mempunyai nilai tambah.
gb-11
Sedangkan kata “kimia” dapat diartikan sebagai suatu proses dimana sebelum dan sesudah proses terjadi perubahan “identitas kimia” yang ditandai dengan perubahan unsur-unsur penyusunnya dan atau perubahan massa molekulnya ataupun struktur molekulnya, dimana proses tersebut pada umumnya disebut dengan “reaksi-kimia”. Bahan sebelum terjadinya proses reaksi kimia disebut dengan “reaktan”, hasil dari reaksi kimia tersebut disebut dengan “produk”, sedangkan proses reaksi-kimia yang memisahkan sebelum dan sesudah proses menggunakan simbol panah, sebagai contoh proses reaksi kimia pada persamaan [1.1] berikut:
pr-11
Pada persamaan [1.1], terjadi perubahan “identitas-kimia” dari reaktan cumene menjadi produk benzene dan propylene. Perubahan identitas kimia tersebut ditandai dengan berubahnya rumus molekul yang akan diikuti dengan perubahan Berat Molekulnya. Reaksi-kimia atau perubahan identitas kimia seperti pada reaksi [1.1] disebut dengan proses dekomposisi yaitu perubahan reaktan menjadi produk yang rumus molekul lebih sederhana. Kebalikan dari proses dekomposisi adalah kombinasi yaitu penggabungan reaktan menjadi produk dengan berat molekul yang lebih besar, jadi dalam hal ini, cumene sebagai produk, didapat dengan jalan mereaksikan Benzene dan Propylene.
Akan tetapi ada juga perubahan identitas-kimia yang tidak diikuti dengan perubahan Berat Molekul, sebagaimana yang terjadi pada persamaan reaksi [1.2].
pr-12
Pada reaksi persamaan [1.2] tidak terjadi perubahan berat molekul, akan tetapi terjadi perubahan konfigurasi dari molekulnya.
Peristiwa perubahan identitas-kimia atau reaksi kimia dapat terjadi pada kondisi fisis tertentu, misalnya suhu, tekanan ataupun pada fasa tertentu. Sebagai contoh proses pembuatan asam nitrat secara komersial dilaksanakan dari Oksida Nitrik (NO), sebagai bahan-baku, bahan-baku tersebut diproduksi dari oksidasi amonia pada fase gas, dengan reaksi sebagai mana ditunjukkan pada persamaan [1.3].
pr-13
Kondisi operasi reaktan masuk pada reaktor (alat yang merupakan tempat terjadi reaksi kimia) pada tekanan 8,2 atm dan suhu 227oC dengan komposisi 15% mol amonia pada udara. Apabila kondisi operasi tidak memenuhi, maka reaksi tidak akan terjadi. Sedangkan keadaan mula-mula dari udara sebagai bahan baku atau reaktan pada persamaan [1.3] berada pada kondisi tekanan 1 atm dan suhu kamar (sekitar 27oC). Oleh karenanya, sebelum masuk (umpan) pada reaktor, maka udara harus diubah kondisi operasinya dulu dengan jalan menaikkan suhu dan tekanannya sehingga sesuai dengan kondisi operasi yang diperlukan untuk reaksi, yaitu 8,2 atm dan 227oC. Perubahan kondisi operasi ini dikatagorikan dengan “perubahan kondisi-fisis”. Dimana perubahan kondisi fisis ini tidak terjadi perubahan identitas kimia. Untuk merubah kondisi-fisis dari suatu bahan (zat) diperlukan peralatan (equipment), seperti peralatan “penukar-kalor” (heat exchanger) yang digunakan untuk merubah suhu, “kompresor” alat untuk menaikkan tekanan material fase gas dan lain-lain yang dibahas lebih lanjut pada bab-bab berikutnya.
Karena luasnya yang harus ditangani dalam bidang Kimia Industri, kemudian beberapa guru besar dibidang Teknik Kimia dari Massachusetts Institute of Technology yang bekerja dibidang Industri pada tahun 1910 mengelompokan bidang ini menjadi dua bagian besar, yaitu “Satuan-Proses” (Unit Process) dan “Satuan-Operasi” (Unit Operation), (Shreve, 1967). Permasalahan yang berhubungan dengan perubahan-perubahan yang bersifat fisika dalam Industri Kimia dikatagorikan dalam “Satuan-Operasi”, sedangkan perubahan yang bersifat kimia dimasukkan dalam kelompok “Satuan-Proses”.

Hukum-hukum Dasar Ilmu Kimia



STOIKIOMETRI adalah cabang ilmu kimia yang mempelajari hubungan kuantitatif dari komposisi zat-zat kimia dan reaksi-reaksinya.



1. HUKUM KEKEKALAN MASSA = HUKUM LAVOISIER
"Massa zat-zat sebelum dan sesudah reaksi adalah tetap".

Contoh:
hidrogen + oksigen ® hidrogen oksida
(4g) (32g) (36g)

2. HUKUM PERBANDINGAN TETAP = HUKUM PROUST
"Perbandingan massa unsur-unsur dalam tiap-tiap senyawa adalah tetap"

Contoh:
a. Pada senyawa NH3 : massa N : massa H
= 1 Ar . N : 3 Ar . H
= 1 (14) : 3 (1) = 14 : 3
b. Pada senyawa SO3 : massa S : massa 0
= 1 Ar . S : 3 Ar . O
= 1 (32) : 3 (16) = 32 : 48 = 2 : 3

Keuntungan dari hukum Proust:
bila diketahui massa suatu senyawa atau massa salah satu unsur yang membentuk senyawa tersebut make massa unsur lainnya dapat diketahui.

Contoh:
Berapa kadar C dalam 50 gram CaCO3 ? (Ar: C = 12; 0 = 16; Ca=40)
Massa C = (Ar C / Mr CaCO3) x massa CaCO3
= 12/100 x 50 gram = 6 gram
massa C
Kadar C = massa C / massa CaCO3 x 100%
= 6/50 x 100 % = 12%

3. HUKUM PERBANDINGAN BERGANDA = HUKUM DALTON
"Bila dua buah unsur dapat membentuk dua atau lebih senyawa untuk massa salah satu unsur yang sama banyaknya maka perbandingan massa unsur kedua akan berbanding sebagai bilangan bulat dan sederhana".

Contoh:

Bila unsur Nitrogen den oksigen disenyawakan dapat terbentuk,
NO dimana massa N : 0 = 14 : 16 = 7 : 8
NO2 dimana massa N : 0 = 14 : 32 = 7 : 16

Untuk massa Nitrogen yang same banyaknya maka perbandingan massa Oksigen pada senyawa NO : NO2 = 8 :16 = 1 : 2

4. HUKUM-HUKUM GAS
Untuk gas ideal berlaku persamaan : PV = nRT

dimana:
P = tekanan gas (atmosfir)
V = volume gas (liter)
n = mol gas
R = tetapan gas universal = 0.082 lt.atm/mol Kelvin
T = suhu mutlak (Kelvin)

Perubahan-perubahan dari P, V dan T dari keadaan 1 ke keadaan 2 dengan kondisi-kondisi tertentu dicerminkan dengan hukum-hukum berikut:








A.

HUKUM BOYLE
Hukum ini diturunkan dari persamaan keadaan gas ideal dengan
n1 = n2 dan T1 = T2 ; sehingga diperoleh : P1 V1 = P2 V2

Contoh:
Berapa tekanan dari 0 5 mol O2 dengan volume 10 liter jika pada temperatur tersebut 0.5 mol NH3 mempunyai volume 5 liter den tekanan 2 atmosfir ?

Jawab:
P1 V1 = P2 V2
2.5 = P2 . 10  ®  P2 = 1 atmosfir

B. HUKUM GAY-LUSSAC
"Volume gas-gas yang bereaksi den volume gas-gas hasil reaksi bile diukur pada suhu dan tekanan yang sama, akan berbanding sebagai bilangan bulat den sederhana".

Jadi untuk: P1 = P2 dan T1 = T2 berlaku : V1 / V2 = n1 / n2

Contoh:
Hitunglah massa dari 10 liter gas nitrogen (N2) jika pada kondisi tersebut 1 liter gas hidrogen (H2) massanya 0.1 g.
Diketahui: Ar untuk H = 1 dan N = 14

Jawab:
V1/V2 = n1/n2 ®  10/1 = (x/28) / (0.1/2) ®  x = 14 gram
Jadi massa gas nitrogen = 14 gram.

C. HUKUM BOYLE-GAY LUSSAC
Hukum ini merupakan perluasan hukum terdahulu den diturukan dengan keadaan harga n = n2 sehingga diperoleh persamaan:
P1 . V1 / T1 = P2 . V2 / T2

D. HUKUM AVOGADRO
"Pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama. Dari pernyataan ini ditentukan bahwa pada keadaan STP (0o C 1 atm) 1 mol setiap gas volumenya 22.4 liter volume ini disebut sebagai volume molar gas.

Contoh:
Berapa volume 8.5 gram amoniak (NH3) pada suhu 27o C dan tekanan 1 atm ?
(Ar: H = 1 ; N = 14)

Jawab:
85 g amoniak = 17 mol = 0.5 mol

Volume amoniak (STP) = 0.5 x 22.4 = 11.2 liter

Berdasarkan persamaan Boyle-Gay Lussac:

P1 . V1 / T1 = P2 . V2 / T2
1 x 112.1 / 273 = 1 x V2 / (273 + 27) ®  V2 = 12.31 liter

Pengertian Kimia

Kimia (dari bahasa Arab: كيمياء, transliterasi: kimiya = perubahan benda/zat atau bahasa Yunani: χημεία, transliterasi: khemeia) adalah ilmu yang mempelajari mengenai komposisi, struktur, dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom dan ikatan kimia.


KIMIA LARUTAN
2.1 Komponen Larutan
Larutan adalah campuran homogen (komposisinya sama), serba sama (ukuran partikelnya), tidak ada bidang batas antara zat pelarut dengan zat terlarut (tidak dapat dibedakan secara langsung antara zat pelarut dengan zat terlarut), partikel- partikel penyusunnya berukuran sama (baik ion, atom, maupun molekul) dari dua zat atau lebih. Dalam larutan fase cair, pelarutnya (solvent) adalah cairan, dan zat yang terlarut di dalamnya disebut zat terlarut (solute), bisa berwujud padat, cair, atau gas. Dengan demikian, larutan = pelarut (solvent) + zat terlarut (solute). Khusus untuk larutan cair, maka pelarutnya adalah volume terbesar.
Ada 2 reaksi dalam larutan, yaitu:
a) Eksoterm, yaitu proses melepaskan panas dari sistem ke lingkungan, temperatur dari campuran reaksi akan naik dan energi potensial dari zat- zat kimia yang bersangkutan akan turun.
b) Endoterm, yaitu menyerap panas dari lingkungan ke sistem, temperatur dari campuran reaksi akan turun dan energi potensial dari zat- zat kimia yang bersangkutan akan naik.
Larutan dapat dibagi menjadi 3, yaitu:
a) Larutan tak jenuh yaitu larutan yang mengandung solute (zat terlarut) kurang dari yang diperlukan untuk membuat larutan jenuh. Atau dengan kata lain, larutan yang partikel- partikelnya tidak tepat habis bereaksi dengan pereaksi (masih bisa melarutkan zat). Larutan tak jenuh terjadi apabila bila hasil kali konsentrasi ion < Ksp berarti larutan belum jenuh ( masih dapat larut).
b) Larutan jenuh yaitu suatu larutan yang mengandung sejumlah solute yang larut dan mengadakan kesetimbangn dengan solut padatnya. Atau dengan kata lain, larutan yang partikel- partikelnya tepat habis bereaksi dengan pereaksi (zat dengan konsentrasi maksimal). Larutan jenuh terjadi apabila bila hasil konsentrasi ion = Ksp berarti larutan tepat jenuh.
c) Larutan sangat jenuh (kelewat jenuh) yaitu suatu larutan yang mengandung lebih banyak solute daripada yang diperlukan untuk larutan jenuh. Atau dengan kata lain, larutan yang tidak dapat lagi melarutkan zat terlarut sehingga terjadi endapan. Larutan sangat jenuh terjadi apabila bila hasil kali konsentrasi ion > Ksp berarti larutan lewat jenuh (mengendap).
Berdasarkan banyak sedikitnya zat terlarut, larutan dapat dibedakan menjadi 2, yaitu:
a) Larutan pekat yaitu larutan yang mengandung relatif lebih banyak solute dibanding solvent.
b) Larutan encer yaitu larutan yang relatif lebih sedikit solute dibanding solvent.
Dalam suatu larutan, pelarut dapat berupa air dan tan air.
Contoh soal komponen larutan
Tentukan pelarut dan zat terlarut dalam larutan alkohol 25% dan 75%?
Jawab:
a. Dalam larutan alkohol 25% misalnya terdapat 100 gram larutan alkohol.
Zat terlarut = 25 % x 100 gram = 25 gram (alkohol)
Zat pelarut = 75% x 100 gram = 75 gram ( air)
b. Dalam larutan alkohol 75% misalnya terdapat 100 gram larutan alkohol.
Zat terlarut = 25% x 100 gram = 25 gram (air)
Zat pelarut = 75% x 100gram = 75 gram (alkohol)
Jadi, untuk larutan cair maka pelarutnya adalah volume terbesar.
2.2 Konsentrasi Larutan
Konsentrasi larutan dapat dibedakan secara kualitatif dan kuantitatif. Secara kualitatif, larutan dapat dibedakan menjadi larutan pekat dan larutan encer. Dalam larutan encer, massa larutan sama dengan massa pelarutnya karena massa jenis larutan sama dengan massa jenis pelarutnya. Secara kuantitatif, larutan dibedakan berdasarkan satuan konsentrasinya. Ada beberapa proses melarut (prinsip kelarutan), yaitu:
a) Cairan- cairan
Kelarutan zat cair dalam zat cair sering dinyatakan “Like dissolver like” maknanya zat- zat cair yang memiliki struktur serupa akan saling melarutkan satu sama lain dalam segala perbandingan. Contohnya: heksana dan pentana, air dan alkohol => H- OH dengan C2H5- OH.
Perbedaan kepolaran antara zat terlarut dan zat pelarut pengaruhnya tidak besar terhadap kelarutan. Contohnya: CH3Cl (polar) dengan CCl4 (non- polar).Larutan ini terjadi karena terjadinya gaya antar aksi, melalui gaya dispersi (peristiwa menyebarnya zat terlarut di dalam zat pelarut) yang kuat. Di sini terjadi peristiwa soluasi, yaitu peristiwa partikel- partikel pelarut menyelimuti (mengurung) partikel terlarut. Untuk kelarutan cairan- cairan dipengaruhi juga oleh ikatan Hydrogen.
b)Padat- cair
Padatan umumnya memiliki kelarutan terbatas di cairan hal ini disebabkan gaya tarik antar molekul zat padat dengan zat padat > zat padat dengan zat cair. Zat padat non- polar (sedikit polar) besar kelarutannya dalam zat cair yang kepolarannya rendah. Contohnya: DDT memiliki struktur mirip CCl4 sehingga DDT mudah larut di dalam non- polar (contoh minyak kelapa), tidak mudah larut dalam air (polar).
c) Gas- cairan
Ada 2 prinsip yang mempengaruhi kelarutan gas dalam cairan, yaitu:
Ø Makin tinggi titik cair suatu gas, makin mendekati zat cair gaya tarik antar molekulnya. Gas dengan titik cair lebih tinggi, kelarutannya lebih besar.
Ø Pelarut terbaik untuk suatu gas ialah pelarut yang gaya tarik antar molekulnya sangat mirip dengan yang dimiliki oleh suatu gas.
Titik didih gas mulia dari atas ke bawah dalam suatu sistem periodik, makin tinggi, dan kelarutannya makin besar.
Pengaruh temperatur (T) dan tekanan (P) terhadap kelarutan, yaitu peningkatan temperatur menguntungkan proses endotermis, sebaliknya penurunan temperatur menguntungkan proses eksotermis. Proses kelarutan zat padat dalam zat cair umumnya berlangsung endoterm akibatnya kenaikan temperatur menaikkan kelarutan. Proses kelarutan gas dalam cair berlangsung eksoterm akibatnya kenaikan temparatur menurunkan kelarutan.
Proses melarut dianggap proses kesetimbangan,
Solute + Solvent Larutan DH = - (eksoterm)
DH = + (endoterm)
Faktor tekanan sangat besar pengaruhnya pada kelarutan gas dalam cair. Hubungan ini dijelaskan dengan Hukum Henry, yaitu Cg = k . Pg (tekanan berbanding lurus dengan konsentrasi).
Panas pelarutan yaitu banyaknya energi/ panas yang diserap atau dilepaskan jika suatu zat terlarut dilarutkan dalam pelarut. Ada beberapa 3 tahap pada proses melarutkan suatu zat, yaitu:
Tahap 1, yaitu: Baik zat terlarut maupun zat pelarut masih tetap molekul- molekulnya berikatan masing- masing.
Tahap 2,yaitu:Molekul- molekul yang terdapat pada zat terlarut memisahkan diri sehingga hanya terdiri dari 1 molekul tanpa adanya ikatan lagi dengan molekul- molekul yang terdapat di dalamnya, begitu pula molekul- molekul yang terdapat pada zat pelarut.
Tahap 3, yaitu: Antara molekul pada zat terlarut akan mengalami ikatan dengan molekul pada zat pelarut.
Pada umumnya: Tahap 1 memerlukan panas.
Tahap 2 memerlukan panas.
Tahap 3 menghasilkan panas.
Eksoterm: 1+2 < 3 dengan DH = - (eksoterm)
Endoterm: 1+2 > 3 dengan DH = + (endoterm)
Konsentrasi akan lebih eksak jika dinyatakan secara kuantitatif, menggunakan satuan- satuan konsentrasi:
1. Fraksi mol (X)
2. Persentase : a. Persentase berat per berat (% b/b)
b. Persentase berat per volume (% b/v)
c. Persentase volume per volume (% v/v)
3. Bagian per sejuta
4. Kemolaran atau molaritas (M)
5. Kemolalan atau molalitas (m)
Fraksi mol (X)
Fraksi mol suatu zat adalah perbandingan jumlah mol suatu zat terhadap jumlah total mol seluruh zat yang menyusun suatu larutan.
 X =  X pelarut + Xterlarut = 1
Persentase (%)
1. Persentase berat per berat (% b/b)
Persen b/b adalah jumlah gram zat terlarut dalam tiap 100 gram larutan.

%b/b =x100%

Contoh: Larutan cuka sebanyak 40 gram mengandung asam asetat sebanyak 2 gram. Hitunglah konsentrasi larutan itu dalam satuan % b/b?
Solusi: % b/b = 2/40 x 100%= 5%
2. Persentase berat per volume (% b/v)
Persentase b/v adalah jumlah gram zat terlarut dalam tiap 100 ml larutan. 

%b/v = x100%

Satuan %b/v umumnya dipakai untuk zat terlarut padat dalam pelarut cair.
Contoh: Untuk membuat larutan infus glukosa, 45 gram glukosa murni dilarutkan dalam akuades hingga volume larutan menjadi 500 ml. Hitunglah konsentrasi larutan itu dalam satuan %b/v?
Solusi:%b/v= 45/100 x 100%= 90 %
3. Persentase volume per volume (% v/v)
Persentase v/v adalah jumlah ml zat terlarut dalam tiap 100 ml larutan.

%v/v = x100%

Satuan %v/v umumnya dipakai untuk zat terlarut cair dalam pelarut cair.
Contoh: Etanol sebanyak 150 ml dicampur dengan 350 ml akuades. Hitunglah konsentrasi etanol dalam satuan %v/v?
Solusi:Volume larutan = 150 + 350 = 500 ml.
%v/v= 150/500 x 100%= 30 %
Bagian per sejuta (ppm/ part per million)
Satuan ppm menyatakan satu gram zat terlarut dalam satu juta gram pelarut.

ppm = x100%

Dalam rumus di atas satu gram zat terlarut dibagi massa larutan karena massa jenis larutan sama dengan massa jenis pelarutnya sehingga massa larutan = massa pelarutnya.
Kemolaran atau molaritas (M)
Kemolaran atau konsentrasi molar adalah jumlah mol zat terlarut dalam tiap liter larutan atau jumlah mmol zat terlarut dalam tiap ml larutan.
                                           M==
=x
Keterangan: gr = massa zat terlarut (gram)
Mr= Mr zat terlarut
v = volume larutan (mL)
Kemolalan atau molalitas (m)
Kemolalan adalah jumlah mol zat terlarut dalam tiap 1000 gram pelarut.
m=  atau m = x mol zat terlarut = x
Keterangan: p= gram pelarut

2.3 Larutan Asam-basa
2.3.1 Konsep Asam- Basa
2.3.1.1 Asam- Basa Arrhenius
Asam adalah zat yang dalam air dapat menghasilkan ion H+ . Contoh asam: HCl, H2SO4, H3PO4. Sifat- sifat larutan asam adalah sebagai berikut:
§ Dalam air menghasilkan ion H+ .
§ Menyebabkan warna kertas lakmus menjadi merah.
§ Larutannya dalam air dapat menghantarkan arus listrik.
§ Menyebabkan perkaratan logam (korosif).
Jumlah ion H+ yang dapat dibebaskan oleh satu molekul asam disebut valensi atau martabat asam tersebut. Berdasarkan valensinya, asam dibedakan atas:
1) Asam bervalensi satu, misalnya: HCl, HCN, HNO3, CH3COOH, dll.
2) Asam bervalensi dua, misalnya: H2SO4, H2CrO4, H2CO3, dll.
3) Asam bervalensi tiga, misalnya: H3PO4, H3AsO­4, dll.
Basa adalah zat yang dalam air dapat menghasilkan ion OH- . Contoh basa: NaOH, Ca(OH)2 , Al2(OH)3 , NH3, dll. Sifat- sifat larutan basa adalah sebagai berikut:
§ Dalam air dapat menghasilkan ion OH- .
§ Menyebabkan warna kertas lakmus menjadi biru.
§ Larutannya dalam air dapat menghantarkan arus listrik.
§ Jika mengenai kulit, maka kulit akan melepuh (kaustik).
Jumlah ion OH- yang dapat dihasilkan oleh satu molekul basa disebut valensi atau martabat basa. Berdasarkan valensinya basa dibedakan atas:
1) Basa bervalensi satu, misalnya: NaOH, KOH, AgOH, NH4OH, dll.
2) Basa bervalensi dua, misalnya: Ca(OH)2, Mg(OH)2,Fe(OH)2, dll.
3) Basa bervalensi tiga, misalnya: Fe(OH)3, Cr(OH)3, dll.
Jadi di sini ion H+ tidak berikatan dengan air, atau bebas di air tanpa adanya ikatan.
2.3.1.2. Asam- Basa Bronsted- Lowry
Asam adalah suatu zat yang dapat menyumbang proton (H+), sehingga disebut donor proton. Basa adalah zat yang dapat menerima proton, sehingga disebut akseptor proton. Jadi di sini ion H+ berikatan dengan air
.
Contoh H2O + HCl H3O+ + Cl-
Dalam reaksi di atas,
HCl termasuk asam karena memberi proton.
H2O termasuk basa kare4na menerima proton.
Zat yang telah menerima proton disebut asam konjugasi, sedangkan yang telah memberi proton disebut basa konjugasi. Dalam contoh reaksi di atas, H3O+ adalah asam konjugasi, sedangkan Cl- adalah basa konjugasi.
2.3.1.3 Asam- Basa Lewis
Asam adalah senyawa penerima (akseptor ) pasangan elektron, sedangkan basa adalah senyawa pemberi (donor) pasangan elektron. Reaksi asam- basa Lewis tergolong reaksi pembentukan ikatan koordinasi. Contoh reaksi BF3 (asam Lewis) dengan NH3 (basa Lewis).
2.3.2 Kekuatan Asam- Basa
Asam dapat dibedakan menjadi asam kuat dan asam lemah, begitu pula basa. Reaksi ionisasi asam kuat, secara umum dapat ditulis :
HxA(aq) à xH+(aq) + Ax-(aq). Yang termasuk asam kuat, meliputi: HCl, HBr, HI, HNO3, H2SO4, HClO4, dll. Reaksi asam kuat bersifat satu arah karena asam kuat mudah terionisasi dalam air.
Reaksi ionisasi asam lemah, secara umum dapat ditulis :
HzB(aq) à zH+(aq) + B z- (aq). Yang termasuk asam lemah, meliputi: CH3COOH, HF, HCN, H2CO3, dll. Reaksi asam lemah bersifat reversibel karena asam lemah tidak terionisasi sempurna di dalam air.
Basa kuat meliputi senyawa- senyawa hidroksida alkali dan beberapa hidroksida alkali tanah. Selain hidroksida- hidroksida tersebut semuanya tergolong basa lemah.
Asam kuat dan basa kuat dalam air mudah terionisasi , dengan derajat ionisasi (a) » 1, sehingga jumlah ion- ionnya relatif banyak. Akibatnya, larutan asam kuat dan basa kuat mudah menghantarkan arus listrik, sehingga disebut larutan elektrolit kuat. Sebaliknya, larutan basa lemah dan asam lemah sukar terionisasi (a £ 1), sehingga tergolong larutan elektrolit lemah.
Senyawa- senyawa yang dapat bertindak sebagai asam (melepaskan H+) dan juga dapat bertindak sebagai basa (melepaskan OH-) disebut senyawa amfoter. Senyawa- senyawa amfoter, meliputi: Be(OH)2, Al(OH)3, Zn(OH)2,dll.
2.3.3 Indikator
Indikator asam basa adalah suatu zat yang dapat berubah warna apabila pH lingkungannya berubah atau larutan yang berisi indikator berubah pH. Atau dengan kata lain, suatu senyawa yang berbeda warnanya dalam larutan asam dengan larutan basa.Dalam indikator terdapat dua warna dalam keadaan basa (warna basa) dan sebaliknya

Mol: Satuan Paling Penting Kimiawan

Kimiawan melakukan banyak hal dalam laboratorium mereka. Salah satu contohnya adalah menentukan kuantitas suatu zat yang terkandung di dalam suatu materi, atau melakuakan sisntesis suatu senayawa. Pekerjaan ini tak luput dari pertanyaaan sebera banyakkah sesuatu yang ada disana? atau seberapa banyak zat yang bisa saya dapatkan?
Agar bisa mendapatkan jawaban pertanyaan diatas maka Kimiawan menggunakan persamaan reaksi sebagai dasar perhitungan mereka. Adapun dalam perhitungan ini tentu saja melibatkan suatu besaran yang nantinya bisa mengubungkan antara dunia mikroskopik (dalam hal ini atom, molekul, atau ion) dengan dunia makroskopik (dalam hal ini materi yang terdapat dialam yang dapat ditimbang dengan mudah).
Nah besaran yang menghubungkan ini kita namakan dengan ‘mol‘. Mol mewakili suatu bilangan yang besarnya adalah 6,022×1023 yang biasanya di sebut sebagai bilangan Avogadro, nama ini dipakai sebagai penghargaan kepada ilmuwan Amedeo Avogdro yang berperan penting dalam perkembangan prinsip mol.
Jika kita tulis dengan notasi panjanganya maka bilangan Avogardo akan tampak seperti berikut ini:
602.200.000.000.000.000.000.000
Bisakah Anda membayangkan berapa banyak bilangan ini? Satu mol biji beras akan menutupi wilayah daratan dunia dengan ketebalan 75 meter, dan jika Anda memiliki marshmallow sebanyak 1 mol maka permen ini bisa menutupi seluruh bagian Indonesia dengan ketebalan 600 mol, dan jika Anda punya satu mol buah semangka, maka wow…..jujur saya tak mau membayangkannya 
Mengapa penting sekali untuk memahami konsep mol?
Ilmu kimia selalu berhubungan dengan atom, molekul, atau ion yang notabentenya berukuran sangat kecil. Amatlah sangat repot jika seorang kimiawan mengatakan kepada asistennya untuk mengambil satu juta molekul gula, atau mengambil 500 atom besi, Nah Anda bisa membayangkannya kan bagaimana pusingnya asisten ini untuk mengambil dan menghitung satu-satu zat tersebut. Dan saya yakin Anda pun tak akan mau melakukannya.
Adakah cara yang mudah untuk melakukannya? Yep, yaitu dengan cara menimbang. Logikanya seperti ini, Anda disuruh mengantongi 1 karung kacang kedelai ke dalam kantong plastik kecil dimana setiap plastik berisi 100 biji kacang kedelai. Anda dibayar 1000 rupiah untuk setiap kantongnya. Bagaimana usaha Anda agar pekerjaan Anda cepat selesai?
Tentu Anda akan mengambil misalnya, 10 biji kedelai dan kemudian menimbangnya. Misal berat 10 biji kedelai ini adalah 15 gram maka 100 biji kedelai beratnya adalah 150 gram. Lalu selanjutnya Anda tinggal menimbangnya 150 gram dan kemudian memasukannya ke kantong plastik. Bukankah pekerjaan ini jauh lebih mudah dibandingkan harus menghitung satu persatu?
Jadi gampanganya mol merupakan istilah yang hampis sama untuk menyatakan lusin (12 biji ), rim (500 lembar), atau kodi (10 biji). Mol menjembatani antara dunia mikroskopik dengan makroskopik. Mol bisa menunjukkan ada berapa banyak partikel yang terkandung di suatu zat sekaligus berapa masa dala satuan gram zat tersebut. Mengapa demikian?
Mol juga merupakan jumlah partiel yang terkandung dalam 12 gram tepat isotop atom karbon C-12. Ini artinya jika kamu memiliki 12 gram 12C maka kamu memiliki 6,022×1023 partikel karbon. Sedangkan untuk unsur lainnya maka 1 mol adalah sama dengan berat atomnya, atau untuk senyawa satu mol adalah rumus kimia senyawa tersebut dalam satuan gram.



Saya contohkan ya,
  • atom kalsium berat atomnya adalah 40, maka 1 mol kalsium beratnya adalah 40 gram.
  • air memiliki rumus molekul H2O, ini berarti berat molekulnya adalah (2×1 dari H + 1×16 dari O) yaitu 18, jadi 1 mol air masanya adalah 18 gram.
Atau dalam rumus kita bisa menuliskan:
mencari mol untuk unsur :

mencari mol untuk senyawa :

Sistem Pengapian pada Seeda Motor


a. Pendahuluan

1. Persyaratan Dasar (contoh motor bensin)

Persyaratan dasar agar motor dapat menyala adalah:
• Bahan bakar yang dikabutkan / diuapkan.
• Temperatur campuran bahan bakar & udara yang cukup tinggi.
• Penyalaan pada saat yang tepat.

2. Macam-macam sistem pengapian

Cara penyalaan bahan bakar pada motor bakar digolongkan menjadi dua jenis:
a. Penyalaan sendiri
• Akibat pemampatan dengan tekanan tinggi, temperatur udara mencapai 700ºC sampai 900ºC.
• Bahan bakar yang dimasukan terbakar dengan sendirinya.
• Penggunaan pada motor disel.

b. Penyalaan dengan sistem pengapian bunga api listrik
• Pada saat akhir langkah kompresi, campuran bahaan bakar & udara dibakar dengan loncatan bunga api lisrtik.
• Penggunaan pada motor otto / bensin.

3. Sistem pengapian pada sepeda motor

Sistem pengapian pada sepeda motor ada dua macam:
a. Sistem pengapian baterai
b. Sistem pengapian magnet

Uraian
a. Sistem pengapian baterai
Sistem pengapian baterai adalah pengapian yang menggunakan baterai sebagaai sumber arus.

1. Prinsip kerja dasar
Tegangan baterai 12V ditransformasikan menjadi tegangan tinggi 5kV – 25kV, kemudian dialirkan ke busi secara bergiliran yang diatur oleh rotor sesuai urutan pengapian (firing order)

2. Sifat-sifat:
• Daya pengapian baik pada putaran rendah.
• Saat pengapian ditentukan oleh putaran mesin dan beban mesin.
• Saat pengapian dapat diatur secara mekanis menggunakan kontak pemutus atau secara elektronis.

b. Sistem pengapian magnet
Sistem pengapian baterai adalah pengapian yang menggunakan generator sebagaai sumber arus.

1. Prinsip kerja dasar
Pengapian magnet merupakan gabungan dari generator dan sistem pengapian.

2. Sifat-sifat
• Sumber tegangan dari generator, sehingga motor dapat hidup tanpa baterai.
• Daya pengapian baik pada putaran tinggi.
• Putaran start harus lebih besar dari 200rpm.
• Sering digunakan pada motor kecil seperti sepeda motor.

4. Dasar transformasi tegangan (prinsip induksi magnetis)

a. Medan magnet
Jika medan magnet digerak-gerakkan di dekat kumparan, maka:
• Terjadi perubahan medan magnet.
• Timbul tegangan lisrtik (tegangan induksi).

b. Transformator
Jika pada sambungan primer transformator dihubungkan dengan arus bolak-balik maka:
• Ada perubahan arus listrik.
• Terjadi perubahan medan magnet.
• Terjadi tegangan induksi.

c. Perbandingan tegangan
Perbandingan tegangan sebanding dengan perbandingan jumlaah lilitan.
• Jika jumlah lilitan sedikit, maka tegangan induksi kecil.
• Jika jumlah lilitan banyak, maka tegangan induksi besar.

d. Transformasi dengan arus searah
Transformator tidak dapat berfungsi dengan arus searah karena:
• Arus tetap.
• Tidak terjadi perubahan medan magnet.
• Tidak ada induksi.
Untuk mengatasinya, harus diberi saklar pada sambungan primer. Jika saklar dibuka/tutup (on/off), maka:
• Arus primer terputus-putus.
• Ada perubahan medan magnet.
• Terjadi induksi.

5. Sifat-sifat induksi diri

• Tegangan bisa melebihi tegangan sumber arus, pada sistem pengapian tegangannya ≈300 – 400V.
• Induksi diri adalah penyebab timbulnya bunga api pada kontak pemutus.
• Arah tegangan induksi diri selalu menghambat arus primer.

6. Bagian-bagian sistem pengapian

• Baterai sebagai sumber arus listrik.
• Kunci kontak untuk menghubungkan dan memutuskan arus listrik dari baterai ke sirkuit.
• Koil untuk mentransformasikan tegangan baterai 12V menjadi tegangan tinggi (5.000 – 25.000V).
• Kontak pemutus untuk menghubungkan dan memutuskan arus primer agar terjadi induksi tegangan tinggi pada sirkuit sekunder sistem pengapian.
• Kondensator kegunaan:
1. Mencegah loncatan bunga api di antara celah kontak pemutus pada saat kontak pemutus mulai membuka.
2. mempercepat pemutusan arus primer sehingga tegangan induksi yang timbul pada sirkuit sekunder tinggi.
• Generator pembangkit sebagai penghasil / sumber tegangan AC.
• Busi untuk meloncatkan bunga api listrik di antara kedua elektroda busi di dalam ruang bakar, sehingga pembakaran dapat dimulai.

b. Macam-macam sistem pengapian

1. Pengapian baterai

Prinsip terbentuknya bunga api listrik (spark) alat penyala batere:
1. Ketika stop contact pada posisi on dan pemutus arus atau platina (breaker points) tertutup, maka arus listrik akan mengalir dari batere menuju ke koil yang di dalamnya terdapat kumparan primer, kumparan sekunder, dan inti besi lunak, sehingga terjadi medan magnet
2. Ketika arus primer diputus karena bagian platina terbuka oleh gerakan berputar dari nok (cam) maka medan magnet akan hilang dan timbul arus induksi pada kumparan sekunder yang mampu menghasilkan tegangan hingga ± 5.000 – 25.000V sehingga menimbulkan loncatan bunga api listrik (spark) pada busi
3. Ketika terjadi spark maka pada setiap gap juga akan terjadi spark, termasuk di platina, untuk itu dipasang kondensor guna menyerap arus induksi, sehingga tidak timbul spark pada platina
2. Sistem pengapian magnet

Prinsip terbentuknya bunga api listrik alat penyala magnet:
1. Ketika stop contact pada posisi on dan pemutus arus atau platina (breaker points) tertutup, maka pada saat jangkar bersama-sama kumparan primer berputar atau magnet berputar, akan terjadi medan magnet pada koil.
2. Ketika arus primer diputus karena bagian platina terbuka oleh gerakan berputar dari nok (cam) maka medan magnet akan hilang dan timbul arus induksi pada kumparan sekunder yang mampu menghasilkan tegangan hingga ±5.000 – 25.000Volt sehingga menimbulkan loncatan bunga api listrik (spark) pada busi.
3. Ketika terjadi spark maka pada setiap gap juga akan terjadi spark, termasuk di platina, untuk itu dipasang kondensor guna menyerap arus induksi, sehingga tidak timbul spark pada platina.

3. Pengapian CDI (Magneto Capasitet Discharge Ignition)

Prinsip kerja CDI
• Tegangan yang dibangkitkan oleh kumparan pembangkit tenaga primer diserahkan oleh diode penyearah dan disimpan dalam kapasitor.
• Sewaktu kumparan pulser membangkitkan tegangan yang mengalir ke transistor lewat diode akan membuka transistor.
• Transistor membuka, maka dengan cepat arus mengalir dari kapasitor ke kumparan primer.
• Dengan cepat pula medan magnet dibangkitkan dan tegangan tinggi dibangkitkan pada kumparan sekunder.

Keuntungan
Efisiensi pengapian / daya pengapian lebih besar di bandingkan dengan menggunakan kontak pemutus

Kerugian
Hanya cocok untuk motor bervolume silinder kecil karena sifat dari kapasitor membuang muatan dengan cepat.

a. Pengapian CDI – DC

Cara kerja
• Arus dari baterai masuk ke trasformer kemudian diputus-putus oleh swich circuit untuk memperbesar tegangan dari baterai.
• Tegangan tinggi dari transformer di searahkan oleh diode, kemudian masuk ke SCR sehingga SCR menjadi aktif (on), dan juga disimpan dalam kapasitor.
• Arus dari kapasitor juga mengalir ke primer koil kemudian ke massa sehingga timbul medan magnet pada inti koil.
• Ketika pick-up melewati pulser, pulser mengeluarkan tegangan dan masuk ke Ignition Timing Control Circuit yang menentukan saat pengapian dengan mengirim pulsa (arus) ke SCR.
• Kemudian gate SCR membuka sehingga membuang muatan ke massa.
• Terjadi perubahan medan magnet pada koil sehingga menghasilkan induksi tegangan tinggi pada kumparan sekunder yang menghasilkan loncatan bunga api listrik pada busi.

b. Pengapian CDI – AC

Cara kerja
• magnet berputar sehingga exciter coil (spoil) mengeluarkan arus AC 100-400 V.
• Arus AC dirubah menjadi arus DC oleh diode kemudian di simpan dalam kapasitor lalu ke primer koil, ke massa sehingga timbul medan magnet pada inti koil.
• Arus DC dari diode juga masuk ke SCR, sehingga SCR menjadi aktif.
• Kemudian pulser membangkitkan tegangan dan masuk ke trigger yang menentukan saat pengapian dengan mengirim pulsa (arus) ke SCR.
• Gate SCR terbuka sehingga kapasitor membuang muatannya ke massa.
• Terjadi perubahan medan magnet pada koil sehingga menghasilkan induksi tegangan tinggi pada kumparan sekunder yang menghasilkan loncatan bunga api listrik pada busi.

Sejarah dan Perkembangan Motor Diesel.

Seorang penemu / peneliti bernama street melakukan penelitiannya,. Perkembangan motor pembakaran dalam (ICE) pada tahun 1794. hasil dari perkembangan tersebut adalah motor diesel sekarang. Selanjutnya dikembangkan oleh seorang nsinyur muda berkewarganegaraan perancis yang bernama Sadi Carnet pada tahun 1824. denya dijadikan dasar dalam perkembangan motor diesel. Dia menyatakan bahwa udara urni yang dimampatkan tersebut dengan perbandingan 15:1 akan menghasilkan udara  yang panas untuk menyalakan kayukering. Udara yang digunakan untuuk pembakaran motor hendaknya dikompresikan dengan perbandingan yang besar sebelum dinyalakan. Dia juga enyatakan bahwa dinding silinder hendaknya didinginkan, karena panas dari dari pembakarankan mempengaruhi kinerja motor.
Nicolaus Otto
Pada tahun 1876 Dr. Nickolas Otto mebuat konstruksi motor pembakarandalam 4 langkah yang menggunakan bahan bakar bensin menggunakan penyalaan api. Pada tahun 1892 seorang insinyur muda berkewarganegaraan german yang bernama Dr. Rudolf Diesel berhasil embuat motor penyalaan kompresi menggunakann bahan bakar serbuk batu bara menggunakan rinsip penyalan bahan bakar dan udara. Dengan perkembangan sistem pompa injeksi bahan bakar yang benar-benar dapat disebut “mini” oleh seorang penemu yang berkewarganegaraan german bernama Robert Bosch pada tahun 1927 membebaskan motor diesel dari masalah memakan tempat. Sistem injeksi pompa Robert Bosch yang ukurannya mini dari karburator, beratnya ringan dan govemer yang menyatu (built-in) sehingga tidak ada lagi system pengabutan udara yang banyak makan tempat untuk kompresor, pipa-pipa dan pengontrol klep. Pompa injeksi motor diesel dapat diatur sesuai pembebanan, kondisi kecepatan motor dapat atau lebih baik dari karburator motor bensin.
patent for gas motor engine - Nicolaus Otto
Dengan perkembangan pompa rotari yang lebih kecil penampilannya juga bobotnya yang lebih ringan yang dikembangkan oleh Vernon Rosa pada tahun 1950-an. Motor diesel akhirnya memasuki perkembangan pemakaian dan pemasaran yang lebih luas. Perkembangan lain dari motor diesel adalah dengan penambahan sebuah turbocarjer yaitu alat untuk memasukkan (memompakan) udara kedalam saluran masuk (intakemanifold). Pompa turbocarjer ini digerakkan oleh gas buang yang kedalam turbocarjer tersebut. Dengan adanya turbocarjer ini maka akan menurunkan asap gas buang. Aldiirnya motor diesel seperti ini keadaanya sekarang menjadi motor yang benar-benar efisien, ringan dan bebas polusi udara. Motor diesel termasuk jenis kelompok motor pembakaran dalam (internal combustion engines), dimana proses pembakarannya didalam silinder. Motor diesel ini menggunakan bahan bakar cair yang dimasukkan ke dalam ruang pembakaran silinder motor dengan diinjeksikkan menggunakan pompa injeksi. Bahan bakar masuk ke dalam silinder atau ruang pembakaran dalam bentuk yang lebih halus maka dipergunakan pengabut (nozzle). Masukkan kedalam silinder pada langkah pemasukkan adalah udara murni. Pada langkah kompresi , udara murni ini dimampatkan hingga menghasilkan panas yang cukup untuk menyalakan bahan bakar yang diinjeksikan kedalam ruang pembakaran motor. Motor diesel sering disebut juga motor penyalan kompresi( compression ignition engines).

Sejarah Pertama Mobil

Mobil (kependekan dari otomobil yang berasal dari bahasa Yunani ‘autos’ (sendiri) dan Latin ‘movére’ (bergerak)) adalah kendaraan beroda empat atau lebih yang membawa mesin sendiri. Jenis mobil termasuk bus, van, truk. Pengoperasian mobil disebut menyetir.

Sejarah

Kendaraan tenaga uap pertama dibuat pada akhir abad 18. Nicolas-Joseph Cugnot dengan sukses mendemonstrasikan kendaraan tersebut pada tahun 1769. Kendaraan pertama menggunakan tenaga mesin uap, mungkin peningkatan mesin uap yang paling dikenal, dikembangkan di Birmingham, Inggris oleh Lunar Society. Dan juga di Birmingham mobil tenaga bensin pertama kali dibuat di Britania pada tahun 1896 oleh Frederick William Lanchester yang juga mematenkan rem cakram. Pada tahun 1890-an, etanol digunakan sebagai sumber tenaga di A.S.
Kendaraan tenaga uap pertama dibuat pada akhir abad 18. Nicolas-Joseph Cugnot dengan sukses mendemonstrasikan kendaraan tersebut pada tahun 1769. Kendaraan pertama menggunakan tenaga mesin uap, mungkin peningkatan mesin uap yang paling dikenal, dikembangkan di Birmingham, Inggris oleh Lunar Society. Dan juga di Birmingham mobil tenaga bensin pertama kali dibuat di Britania pada tahun 1896 oleh Frederick William Lanchester yang juga mematenkan rem cakram. Pada tahun 1890-an, etanol digunakan sebagai sumber tenaga di A.S.

Kepopuleran

Penemuan Cugnot penggunaannya dilihat secara rendah di tempat asalnya Prancis, dan penemuan tersebut diteruskan ke Britania, di mana Richard Trevithick menjalankan gerobak-uap di tahun 1801. Kendaraan tersebut dianggap aneh pada awalnya, namun penemuan dalam dekade setelahnya, seperti rem tangan, transmisi multi-kecepatan, dan peningkatan kecepatan dan setir, membuatnya sukses.
Sekarang ini, Amerika memiliki mobil lebih banyak dari negara lainnya. Jepang memimpin dalam pembuatan mobil, tetapi penduduk Jepang tidak mampu membiayai menjalankan mobil karena tempat parkir yang jarang dan harga bahan bakar yang mahal

Inovasi

Paten mobil pertama di AS diberikan kepada Oliver Evans pada 1789; pada 1804 Evans mendemonstrasikan mobil pertamanya, yang bukan hanya mobil pertama di AS tapi juga merupakan kendaraan amfibi pertama, yang kendaraan tenaga-uapnya sanggup jalan di darat menggunakan roda dan di air menggunakan roda padel.
Umumnya mobil pertama mesin pembakaran dalam yang menggunakan bensin dibuat hampir bersamaan pada 1886 oleh penemu Jerman yang bekerja secara terpisah. Carl Benz pada 3 Juli 1886 di Mannheim, dan Gottlieb Daimler dan Wilhelm Maybach di Stuttgart.
Pada 5 November 1895, George B. Selden diberikan paten AS untuk mesin mobil dua tak. Paten ini memberi dampak negatif pada perkembangan industri mobil di AS. Penerobosan spektakuler dilakukan oleh Berta Benz pada 1888. Mesin-uap, listrik, dan bensin bersaing untuk beberapa dekade, dengan mesin bensin pembakaran dalam meraih dominasi pada 1910-an.
Garis-produksi skala besar pembuatan mobil harga terjangkau dilakukan oleh Oldsmobil pada 1902, dan kemudian dikembangkan besar-besaran oleh Henry Ford pada 1910-an. Dalam periode dari 1900 ke pertengahan 1920-an perkembangan teknologi otomotif sangat cepat, disebabkan oleh jumlah besar (ratusan) pembuat mobil kecil yang semuanya bersaing untuk meraih perhatian dunia.
Pengembangan utama termasuk penyalaan elektronik dan self-starter elektronik (keduanya oleh Charles Kettering, untuk Perusahaan mobil Cadillac di tahun 1910-1911), suspensi independen, dan rem empat ban.
Pada tahun 1930-an, kebanyakan teknologi dalam permobilan sudah diciptakan, walaupun sering diciptakan kembali di kemudian hari dan diberikan kredit ke orang lain. Misalnya, pengemudian roda-depan diciptakan kembali oleh Andre Citroën dalam peluncuran Traction Avant pada 1934, meskipun teknologi ini sudah muncul beberapa tahun sebelumnya dalam mobil yang dibuat oleh Alvis dan Cord, dan di dalam mobil balap oleh Miller (dan mungkin telah muncul pada awal 1897).
Setelah 1930, jumlah produsen mobil berkurang drastis berpasan dengan industri saling bergabung dan matang. Sejak 1960, jumlah produsen hampir tetap, dan inovasi berkurang. Dalam banyak hal, teknologi baru hanya perbaikan dari teknologi sebelumnya. Dengam pengecualian dalam penemuan manajemen mesin, yang masuk pasaran pada 1960-an, ketika barang-barang elektronik menjadi cukup murah untuk produksi massal dan cukup kuat untuk menangani lingkungan yang kasar pada mobil. Dikembangkan oleh Bosch, alat elektronik ini dapat membuat buangan mobil berkurang secara drastis sambil meningkatkan efisiensi dan tenaga.

Keamanan

Kecelakaan mobil hampir sama tua dengan mobil itu sendiri. Joseph Cugnot menabrak mobil tenaga-uapnya “Fardier” dengan tembok pada 1770. Kecelakaan mobil fatal pertama kali yang dicatat adalah Bridget Driscoll pada 17 Agustus 1896 di London dan Henry Bliss pada 13 September 1899 di New York City.
Setiap tahun lebih dari sejuta orang tewas dan sekitar 50 juta orang terluka dalam lalu lintas (menurut perkiraan WHO). Penyebab utama kecelakaan adalah pengemudi mabuk atau dalam pengaruh obat, tidak perhatian, terlalu lelah, bahaya di jalan (seperti salju, lubang, hewan, dan pengemudi teledor). Fasilitas keamanan telah dibuat khusus di mobil selama bertahun-tahun.
Mobil memiliki dua masalah keamanan dasar: Mereka memiliki pengemudi yang sering kali berbuat kesalahan dan ban yang kehilangan gesekan ketika pengereman mendekati setengah gravitasi. Kontrol otomatis telah diusulkan dan dibuat contoh.
Riset awal memfokuskan pada peningkatan rem dan mengurangi bahaya api sistem bahan bakar. Riset sistematik dalam keamanan tabrakan dimulai pada 1958 di Ford Motor Company. Sejak itu, banyak riset memfokuskan pada penyerapan energi luar dengan panel yang mudah hancur dan mengurangi gerakan manusia pada ruang penumpang.
Ada tes standar kemananan mobil, seperti EuroNCAP dan USNCAP. Ada juga tes yang dibantu oleh industri asuransi.
Meskipun peningkatan dalam teknologi, angka kematian dari kecelakaan mobil tetap tinggi, di AS sekitar 40.000 orang meninggal setiap tahun, angka yang tetap bertumbuh sesuai dengan peningkatan populasi dan perjalanan, dengan tren yang sama di Eropa. Angka kematian diperkirakan akan menjadi dua kali lipat di seluruh dunia pada 2020. Angka yang lebih banyak dari kematian adalah luka dan cacat.

Prinsip Kerja Motor Diesel

Mesin mobil merupakan pembangkit tenaga (gerak ), pada mesin inilah dibangkitkan tenaga yang kemudian menimbulkan gerak putar. Bagian-bagian motor dapat dipisahkan menjadi dua yakni bagian yang bergerak dan bagian yang tak bergerak. Sistim yang ada pada sebuah motor terdiri atas sistem bahan bakar, sistim pelumasan, dan sistim pendingin Motor dibedakan dari proses kerjanya yaitu motor empat (4) takt dan motor 2 takt. Sedangkan berdasarkan penyalaan bahan bakamya motor juga dibedakan menjadi 2 yaitu motor bensin dan motor diesel. Motor diesel bekerja dengan torak bolak balik (naik turun pada motor gerak). Keduanya bekerja pada prinsip 4 langkah dan prinsip ini umumnya digunakan pada teknik mobil. Untuk motor diesel sistem kompressi dengan tekanan dan injektor bahan bakar solar atau minyak diesel. Dalam proses pembakaran tenaga panas bahan bakar diubah ketenaga mekanik melalui pembakaran bahan bakar didalam motor. Pembakaran adalah proses kimia dimana Karbondioksida dan zat air bergabung dengan oksigen dalam udara. Jika pembakaran berlangsung maka diperlukan : a)Bahan bakar dan udara dimasukkan kedalam motor b)Bahan bakar dipanaskan hingga suhu tinggi
Pembakaran menimbulkan panas dan menghasilkan tekanan, kemudian menghasilkan tenaga mekanik. Campuran masuk kedalam motor mengandung udara dan bahan bakar. Perban-dingan campuran kira kira 12-15 berbanding 1 setara 12-15 kg udara dalam 1 kg bahan bakar. Yaitu karbon dioksida 85% dan zat asam (Oksigen) 15 % atau 1/5 bagian dengan karbon dioksida dan zat air. Zat lemas (N) tidak mengambil bagian dalam pembakaran

Keunggulan Motor Diesel

Keunggulan motor diesel dibandingkan pembakaran. yang lain adalah :
  1. Motor diesel lebih irit dan efisien 20-30%.pemakaian bahan bakar dari pada motor bensin.
  2. Diesel lebih kuat dan mempunyai daya tahan yang lebih lama.
  3. Motor diesel lebih besar tenaganya sehingga dapat menjadi motor penggerak (primover).
  4. Motor diesel mengakibatkan polusi udara yang lebih kecil.
  5. Motor diesel tidak dipengaruhi oleh cuaca.

Kelemahan / Kekurangan Motor diesel

Kelemahan / Kekurangannya antara lain adalah :

  1. Perbandingan tenaga terhadap berat motor masih lebih besar dibandingkan motor bensin
  2. Motor diesel tetap lebih sukar dihidupkan pertama kali dibandingkan motor bensin
  3. Harga inisial (dasar) Motor diesel lebih mahal karena Motor diesel lebih kompleks dan lebih berat dibandingkan motor bensin.
  4. Perawatan dan servis pada umumnya tidak dapat dikerjakan oleh bengkel lokal